
Memory Management
Masterclass

@addyosmani
+AddyOsmani

JavaScript

DevTools Demos
http://github.com/addyosmani/memory-mysteries

Chrome Task Manager
Memory Timeline
Heap Profiler
Object Allocation Tracker

The Sawtooth Curve
If after a few Timeline iterations you see a sawtooth shaped graph (in the
pane at the top), you are allocating lots of shortly lived objects.

When the chart dips suddenly, it’s an instance when the garbage collector
has run, and cleaned up your referenced memory objects.

But if the sequence of actions is not expected to result in any retained
memory, and the DOM node count does not drop down back to the baseline
where you began, you have good reason to suspect there is a leak.

Memory Leak Pattern (sawtooth)

“Do I have a leak?”
1. Check Chrome Task Manager to see if the tab’s memory usage is growing
2. ID the sequence of actions you suspect is leaking
3. Do a Timeline recording and perform those actions
4. Use the Trash icon to force GC. If you don’t objects will be alive in

memory until the next GC cycle.
5. If you iterate and see a Sawtooth curve, you’re allocating lots of short life

objects. If the sequence of actions is not expected to retain memory and
your DOM node count doesn’t drop - you may have a leak.

6. Use the Object Allocation Tracker to narrow down the cause of the leak. It
takes heap snapshots periodically through the recording.

V8’s Hidden Classes
V8’s optimizing compiler makes many assumptions about your code. Behind
the scenes, it creates hidden classes representing objects.

Using these hidden classes, V8 works much faster. If you delete properties,
these assumptions may no longer be valid and code can be de-optimized
slowing it down.

That said, delete has a purpose in JS and is used in plenty of libraries. The
takeaway is to avoid modifying the structure of hot objects at runtime.
Engines like V8 can detect such “hot” objects and attempt to optimize them.

var o = {x: “y”};

delete o.x;

o.x; // undefined

var o = {x: “y”};

o = null;

o.x; // TypeError

Accidental de-optimization

Take care with the delete keyword

“o” becomes a SLOW object.

It’s better to set “o” to “null”.

Only when the last reference to an
object is removed does that object get

eligible for collection.

function FastPurchase(units, price) {

 this.units = units;

 this.price = price;

 this.total = 0;

 this.x = 1;

}

var fast = new FastPurchase(3, 25);

function SlowPurchase(units, price) {

 this.units = units;

 this.price = price;

 this.total = 0;

 this.x = 1;

}

var slow = new SlowPurchase(3, 25);

//x property is useless

//so I delete it

delete slow.x;

Fast object Slow object

“fast” objects are faster “slow” should be using a smaller memory
footprint than “fast” (1 less property),
shouldn”t it?

Reality: “Slow” uses 15 times more memory

Closures
Closures are powerful. They enable inner functions to retain access to an
outer function’s variables even after the outer function returns.

Unfortunately, they’re also excellent at hiding circular references between
JavaScript objects and DOM objects. Make sure to understand what
references are retained in your closures.

The inner function may need to still access all variables from the outer one,
so as long as a reference to it exists, variables from the outer function can’t
be GC’d and continue to consume memory after it’s done invoking.

 var a = function () {
 var largeStr = new Array(1000000).join('x');
 return function () {
 return largeStr;
 };
}();

var a = function () {
 var smallStr = 'x',
 largeStr = new Array(1000000).join('x');
 return function (n) {
 return smallStr;
 };
}();

var a = (function() { // `a` will be set to the return of this function

 var smallStr = 'x', largeStr = new Array(1000000).join('x');

 return function(n) {

 // which is another function; creating a closure

 eval('');

 return smallStr;

 };

}());

Closures
Closures can be a source of memory

leaks too. Understand what references
are retained in the closure.

DOM Leaks
DOM leaks usually occur when an element gets appended to the DOM,
additional elements are appended to the first element and then the original
element is removed from the DOM without removing the secondary
elements.

In the next example, #leaf maintains a reference to its parentNode and
recursively maintains references up to #tree. It’s only when leafRef is
nullified is the entire tree under #tree a candidate to be garbage collected.

var select = document.querySelector;

var treeRef = select("#tree");

var leafRef = select("#leaf");

var body = select("body");

body.removeChild(treeRef);

//#tree can't be GC yet due to treeRef

//let’s fix that:

treeRef = null;

//#tree can't be GC yet, due to

//indirect reference from leafRef

leafRef = null;

//NOW can be #tree GC

DOM Leaks.
When is #tree GC’d?

for (var i = 0; i < 90000; i++) {

 var buggyObject = {

 callAgain: function() {

 var ref = this;

 var val = setTimeout(function() {

 ref.callAgain();

 }, 90000);

 }

 }

 buggyObject.callAgain();

 buggyObject = null;

}

Timers
Timers are a common source of memory

leaks.

Anything you’re repetitively doing in a
timer should ensure it isn’t maintaining

refs to DOM objects that could
accumulate leaks if they can be GC’d.

If we run this loop..
This introduces a memory leak:

ES6 WeakMaps
WeakMaps help us avoid memory leaks by holding references to properties
weakly. If a WeakMap is the only objects with a reference to another object,
the GC may collect the referenced object.

In the next example, Person is a closure storing private data as a strong
reference. The garbage collector can collect an object if there are only weak
or no references to it.

WeakMaps hold keys weakly so the Person instance and its private data are
eligible for garbage collection when a Person object is no longer referenced
by the rest of the app.

var Person = (function() {

 var privateData = new WeakMap();

 function Person(name) {
 privateData.set(this, { name: name });
 }

 Person.prototype.getName = function() {
 return privateData.get(this).name;
 };

 return Person;
}());

ES6 WeakMaps

var Person = (function() {

 var privateData = {}, // strong reference
 privateId = 0;

 function Person(name) {
 Object.defineProperty(this, "_id", { value:
privateId++ });

 privateData[this._id] = {
 name: name
 };
 }

 Person.prototype.getName = function() {
 return privateData[this._id].name;
 };

 return Person;
}());

Avoid memory leaks
by holding refs to

properties weakly.

Cheat sheet

cheats?!

Design first.
Code from the design.
Then profile the result.

Premature optimization is
the root of all evil.
Donald Knuth

Optimize at the right time.

Memory Checklist

● Is my app using too much memory?

Memory Checklist

Timeline memory view and Chrome task manager can help you identify if you’re using too
much memory. Memory view can track the number of live DOM nodes, documents and JS
event listeners in the inspected render process.

● Is my app using too much memory?
● Is my app free of memory leaks?

Memory Checklist

The Object Allocation Tracker can help you narrow down leaks by looking at JS object
allocation in real-time. You can also use the heap profiler to take JS heap snapshots, analyze
memory graphs and compare snapshots to discover what objects are not being cleaned up by
garbage collection.

● Is my app using too much memory?
● Is my app free of memory leaks?
● How frequently is my app forcing garbage collection?

Memory Checklist

If you are GCing frequently, you may be allocating too frequently. The Timeline memory view
can help you identify pauses of interest.

● Avoid long-lasting refs to DOM elements you no longer need
● Avoid circular object references
● Use appropriate scope
● Unbind event listeners that aren’t needed anymore
● Manage local cache of data. Use an aging mechanism to get

rid of old objects.

Good rules to follow

V8 Deep Dive.

Why does #perfmatter?

Longer battery life
Smoother interactions
Apps can live longer

Silky smooth apps.

Nothing is free.

You will always pay a price for the resources you use.

Tools > Task Manager

JavaScript Execution Time

50-70% of
time in V8

Popular sites

20-40% of
time in V8

apps

Workload for a frame:

16ms to do everything.

JANK
Miss it and you’ll see...

Blow memory & users will be sad.

Performance vs. Memory

So what? You've got 32GB on your machine!

Yeah, but my grandma's Chromebook only has 4GB. #stillSad

My app’s tab is using a gig of RAM. #worstDayEver

When it comes down to the age-old performance vs. memory tradeoff, we
usually opt for performance.

Memory management basics

● What types of values are there?
● How are values organized in memory?
● What is garbage?
● What is a leak?

Core Concepts

With thanks to John Mccutchan & Loreena Lee

● boolean
○ true or false

● number
○ double precision IEEE 754 number
○ 3.14159

● string
○ UTF-16 string
○ “Bruce Wayne”

● objects
○ key value maps

Four primitive types

Always leafs or
terminating nodes.

object[key] = value;

An object.

Any variable type

String only

Think of memory as a graph

The value graph

Root Node

Object Node

Scalar Node

The graph starts with a root.

Root could be browser “window” or
Global object of a Node module.

You don’t control how
this root object is GC.

A value's retaining path(s)

Removing a value from the graph

What is garbage?

● Garbage: All values which cannot be reached from the root node.

1. Find all live values
2. Return memory used by dead values to system

What is garbage collection?

A value's retained size

A value's retained size

A value's retained size

What is a memory leak?

Gradual loss of available
computer memory
When a program repeatedly fails to return memory
obtained for temporary use.

● A value that erroneously still has a retaining path
○ Programmer error

Leaks in JavaScript

email.message = document.createElement("div");

display.appendChild(email.message);

JavaScript

Leaking DOM Node

email

message
Div Node

Child Node

display

Child Node

Child Node

Native Reference

Leaks in JavaScript

// ...

display.removeAllChildren();

JavaScript

Are all the div nodes
actually gone?

Leaking DOM Node

email

message
Div Node

display
Whoops. We cached a reference from the
message object to the div node. Until the
email is removed, this div node will be
pinned in memory and we’ve leaked it.

● Values are organized in a graph

● Values have retaining path(s)

● Values have retained size(s)

Memory Management Basics

V8 memory management

● Every call to new or implicit memory allocation
○ Reserves memory for object
○ Cheap until...

● Memory pool exhausted
○ Runtime forced to perform a garbage collection
○ Can take milliseconds (!)

● Applications must be careful with object allocation patterns
○ Every allocation brings you closer to a GC pause

Where is the cost in allocating memory?

Young generation Old generation

● Generational
○ Split values between young and old
○ Overtime young values promoted to old

How does V8 manage memory?

Young Values Old Values
Long Lived Values

By young and old we mean how
long has the JS value existed for.

After a few garbage collections, if
the value survives (i.e there’s a
retaining path) eventually it gets
promoted to the old generation.

● Young Generation
○ Fast allocation
○ Fast collection
○ Frequent collection

How does V8 manage memory?

Young Values

DevTools Timeline shows the GC event on it.
Below is a young generation collection.

● Old Generation
○ Fast allocation
○ Slower collection
○ Infrequently collected

How does V8 manage memory?

Old Values

● Parts of collection run concurrently with mutator
○ Incremental Marking

● Mark-sweep
○ Return memory to system

● Mark-compact
○ Move values

Some of the old generation’s
collection occurs in parallel with
your page’s execution.

● Why is collecting the young generation faster
○ Cost of GC is proportional to the number of live objects

How does V8 manage memory?

Young Generation Collection Old Generation Collection

High death rate (~80%)

After GC, most values in the young generation
don’t make it. They have no retaining path
because they were used briefly and they’re gone.

Young Generation In Action

To Space

From Space
Used during GC

Values allocated from here

Young Generation In Action

Unallocated memory

From Space

Assume the To Space started off
empty and your page starts
allocating objects..

Young Generation In Action

A Unallocated memory

From Space

Allocate A

Young Generation In Action

A Unallocated memory

From Space

B

Allocate B

Young Generation In Action

A Unallocated memory

From Space

B C

Allocate C

Unallocated
memory

Young Generation In Action

A D

From Space

B C

Allocate D

Until this point, everything has been
fast. There’s been no interruption in
your page’s execution.

Young Generation In Action

A D

From Space

B C E

Not enough room
for E

Then we do new E() and..it’s too big. We
moved closer to this GC pause and we’
ve actually just triggered it.

Unallocated
memory

Young Generation In Action

A D

From Space

B C

Collection Triggered

Page paused

So, E doesn’t happen. It’s kind of paused. The
page is paused, everything halts and the
collection is triggered.

To Space

Unallocated
memory

Young Generation In Action

A DB C

From and To space are swapped

To Space

Unallocated
memory

Young Generation In Action

A DB C

Live Values are found

Labels are flipped internally and then
the live values are found.

To Space

Unallocated
memory

Young Generation In Action

A DB C

A and C are marked. B and D are not
marked so they’re garbage. They’re not
going anywhere.

To Space

Unallocated
memory

Young Generation In Action

A DB C

Live
Values
Copied

This is when the live values are copied
from the From Space to the To Space.

From Space

To Space

Young Generation In Action

A C Unallocated memory

Unallocated
memoryA DB C

So here we’ve done the copy. We’ve done
the collection. Copied the live objects
from one semispace to the next.

From Space

To Space

Young Generation In Action

A C Unallocated memory

There’s no other work done to it. It’s just
ready for use the next time there’s a
collection that needs to happen.

From Space

To Space

Young Generation In Action

A C Unallocated
memoryE

Allocate E

At this point, your page is resumed and the
object E is allocated.

● Each allocation moves you closer to a collection
○ Not always obvious when you are allocating

● Collection pauses your application
○ Higher latency
○ Dropped frames
○ Unhappy users

How does V8 manage memory?

Remember: Triggering a
collection pauses your app.

Performance Tools

performance.memory
Great for field measurements.

the amount of memory (in bytes) that the
JavaScript heap is limited to

performance.memory

jsHeapSizeLimit

the amount of memory (in bytes) that the
JavaScript heap is limited to

the amount of memory (in bytes) currently
being used

performance.memory

jsHeapSizeLimit

totalJSHeapSize

the amount of memory (in bytes) that the
JavaScript heap is limited to

the amount of memory (in bytes) currently
being used

the amount of memory (in bytes) that the
JavaScript heap has allocated, including free
space

performance.memory

jsHeapSizeLimit

totalJSHeapSize

usedJSHeapSize

Chrome DevTools

DevTools Memory Timeline

Force GC from DevTools
Snapshots automatically force GC. In Timeline, it can be useful
to force a GC too using the Trash can.

Memory distribution
Taking heap snapshots

Results
Reachable JavaScript Objects

Switching between views
Summary groups by constructor name
Comparison compares two snapshots
Containment bird’s eye view of the object structure

Understanding node colors

yellow

red

Object has a JavaScript reference on it

Detached node. Referenced from one with
a yellow background.

Reading results
Summary

Distance from the GC root.
Distance

If all objects of the same type are at the same
distance and a few are at a bigger distance, it’s
worth investigating. Are you leaking the latter ones?

Memory used by objects and the
objects they are referencing.

Retained memory

Size of memory held by object
Shallow size

Even small objects can hold large amounts of
memory indirectly by preventing other objects from
being disposed.

All objects created with a
specific constructor.

Constructor

Information to understand why the object
was not collected.

Object’s retaining tree

Tip: It helps to name functions so you
can easily find them in the snapshot.

Closures

function createLargeClosure() {

 var largeStr = new Array(1000000).join('x');

 var lC = function() { //this IS NOT a named function

 return largeStr;

 };

 return lC;

}

function createLargeClosure() {

 var largeStr = new Array(1000000).join('x');

 var lC = function lC() { //this IS a named function

 return largeStr;

 };

 return lC;

}

app.js

Profiling Memory Leaks

Three snapshot technique

retire
d

What do we expect?
New objects to be constantly and consistently collected.

Start from a steady state.
Checkpoint 1

We do some stuff.

Checkpoint 2
We repeat the same stuff.

Checkpoint 3

Again, what do we expect?
All new memory used between Checkpoint 1 and Checkpoint 2
has been collected.

New memory used between Checkpoint 2 and Checkpoint 3 may
still be in use in Checkpoint 3.

The Steps
● Open DevTools
● Take a heap snapshot #1
● Perform suspicious actions
● Take a heap snapshot #2
● Perform same actions again
● Take a third heap snapshot #3
● Select this snapshot, and select
● "Objects allocated between Snapshots 1 and 2"

Evolved memory profiling

Object Allocation Tracker
Record Heap Allocations

Object Allocation Tracker
The object tracker combines the detailed snapshot information of the heap
profiler with the incremental updating and tracking of the Timeline panel.
Similar to these tools, tracking objects’ heap allocation involves starting a
recording, performing a sequence of actions, then stopping the recording for
analysis.

The object tracker takes heap snapshots periodically throughout the
recording and one final snapshot at the end of the recording. The heap
allocation profile shows where objects are being created and identifies the
retaining path.

blue bars

grey bars

memory allocations. Taller = more
memory.

deallocated

Adjustable timeframe
selector

Heap
contents

Allocation Stack Traces (New)

DevTools Settings > Profiler > Record Heap Allocation
Stack Traces

DevTools Settings > Profiler > Record Heap Allocation
Stack Traces

Visualize JS processing over
time

JavaScript CPU Profile (top down)

Shows where
CPU time is
statistically
spent on your
code.

Select “Chart” from the drop-down

Flame Chart View
Visualize JavaScript execution paths

The Flame Chart
The Flame Chart provides a visual representation of JavaScript processing
over time, similar to those found in the Timeline and Network panels. By
analyzing and understanding function call progression visually you can gain
a better understanding of the execution paths within your app.

The height of all bars in a particular column is not significant, it simply
represents each function call which occurred. What is important however is
the width of a bar, as the length is related to the time that function took to
execute.

Visualize profiler data against a time scale

Visualize JavaScript execution paths

Is optimization worth the effort?

GMail’s memory usage (taken over a 10 month period)

Memory leak
fixes start
to roll out

Chrome GC
regressions

 2012

MB

x

2x

3x

4x

median

90th %ile

95th %ile

99th %ile

Through optimization, we reduced our
memory footprint by 80% or more for
power-users and 50% for average users.

Loreena Lee, GMail

Resources

Official Chrome DevTools docs
devtools.chrome.com

V8 Performance & Node.js
https://thlorenz.github.io/v8-perf/

Writing Memory-efficient JavaScript
http://www.smashingmagazine.com/2012/11/05/writing-fast-

memory-efficient-javascript/

Fixing JS Memory leaks in Drupal’s editor
https://www.drupal.org/node/2159965

Avoiding JS memory leaks in Imgur
http://imgur.com/blog/2013/04/30/tech-tuesday-avoiding-a-memory-

leak-situation-in-js

StrongLoop: Memory profiling with
DevTools

http://strongloop.com/strongblog/node-js-performance-tip-of-the-
week-memory-leak-diagnosis/

Ask yourself these questions:

● How much memory is your page using?

● Is your page leak free?

● How frequently are you GCing?

Checklist

Chrome DevTools

● window.performance.memory
● Timeline Memory view
● Heap Profiler
● Object Allocation Tracker

Know Your Arsenal.

#perfmatters

Thank you!

+AddyOsmani
@addyosmani

