JavaScript

Memory Management
Masterclass

@ELONNEN]
+AddyOsmani

DevTools Demos

Chrome Task Manager
Memory Timeline

Heap Profiler

Object Allocation Tracker

The Sawtooth Curve

If after a few Timeline iterations you see a sawtooth shaped graph (in the
pane at the top), you are allocating lots of shortly lived objects.

When the chart dips suddenly, it's an instance when the garbage collector
has run, and cleaned up your referenced memory objects.

But If the sequence of actions is not expected to result in any retained
memory, and the DOM node count does not drop down back to the baseline
where you began, you have good reason to suspect there is a leak.

Memory Leak Pattern (sawtooth)

Capture stacks 100001 s 20000 ms 30000 ms 40000 ms 50000 ms 60000 ms 70000 ms 80000 ms

o Capture memory

~ a s~ —os s o~ —n o~ ~ s

RECORDS 20000 ms 30000 ms 40000 ms 50000 ms 60000 ms 70000 ms 80000 rhs

\ 2

» © Animation Frame Fired (13 ‘=
@ Update layer tree 0
® Composite Layers 0

» © Animation Frame Fired (13... |»

@ lIndate laver tree [

MEMORY JS Heap Size: 2193148 Documents: 1 Nodes: 43
Used JS Heap [2065772:30840

Documents [1:1]
Nodes [43:43] /
Listeners [7:7] /

“Do | have a leak?”

o=

o

Check Chrome Task Manager to see if the tab’s memory usage is growing
ID the sequence of actions you suspect is leaking

Do a Timeline recording and perform those actions

Use the Trash icon to force GC. If you don't objects will be alive in
memory until the next GC cycle.

If you iterate and see a Sawtooth curve, you're allocating lots of short life
objects. If the sequence of actions is not expected to retain memory and
your DOM node count doesn't drop - you may have a leak.

Use the Object Allocation Tracker to narrow down the cause of the leak. It
takes heap snapshots periodically through the recording.

V8's Hidden Classes

V8's optimizing compiler makes many assumptions about your code. Behind
the scenes, It creates hidden classes representing objects.

Using these hidden classes, V8 works much faster. If you delete properties,

these assumptions may no longer be valid and code can be de-optimized
slowing 1t down.

That said, delete has a purpose in JS and is used in plenty of libraries. The
takeaway is to avoid modifying the structure of hot objects at runtime.
Engines like V8 can detect such “hot” objects and attempt to optimize them.

Accidental de-optimization

Take care with the delete keyword

‘0" becomes a SLOW object.

u_n

It's better to set “0” to “null”.

Only when the last reference to an
object Is removed does that object get
eligible for collection.

var o = {x: “y”};
delete 0.Xx;
0.x; // undefined

var o = {x: “y”};
o = null;
o.Xx; // TypeError

Fast object

function FastPurchase(units, price) {
this.units = units;
this.price = price;
this.total = ©;
this.x = 1;
}

var fast = new FastPurchase(3, 25);

“fast” objects are faster

Reality: “Slow” uses 15 times more memory

Constructor
» SlowPurchase

p FastPurchase

Distance
3

3

' Objects Count
300001 31%

300001 31%

'Shallow Size
3600012

8400012

3%
6 %

‘Retained Size v

127200104 89%
8400104 6%

Closures

Closures are powerful. They enable inner functions to retain access to an
outer function’s variables even after the outer function returns.

Unfortunately, they're also excellent at hiding circular references between
JavaScript objects and DOM objects. Make sure to understand what
references are retained in your closures.

The inner function may need to still access all variables from the outer one,
so as long as a reference to it exists, variables from the outer function can't
be GC'd and continue to consume memory after it's done invoking.

Closures

Closures can be a source of memory
leaks too. Understand what references
are retained in the closure.

var a = function () {
var largeStr = new Array(1000000).join('x");
return function () {
return largeStr;
b
310;
var a = function () {
var smallStr ='x',
largeStr = new Array(1000000).join('x");

return function (n) {
return smallStr;

I

30;

var a = (function() {// "a” will be set to the return of this function
var smallStr = 'x', largeStr = new Array(1000000).join('x");
return function(n) {

// which is another function; creating a closure

eval('");

return smallStr;

10);

DOM Leaks

DOM leaks usually occur when an element gets appended to the DOM,
additional elements are appended to the first element and then the original
element is removed from the DOM without removing the secondary
elements.

In the next example, #leaf maintains a reference to its parentNode and
recursively maintains references up to #tree. It's only when leafRef Is
nullified is the entire tree under #tree a candidate to be garbage collected.

DOM Leaks.

When is #tree GC'd?

!

KR

ul

| f—|_|_|'—|

EilEs
e

n
]

attleaf

var select = document.querySelector;
var treeRef = select("#tree");

var leafRef = select("#leaf");

var body = select("body");
body.removeChild(treeRef);

//#tree can't be GC yet due to treeRef
//let’s fix that:
treeRef = null;

//#tree can't be GC yet, due to
//indirect reference from leafRef

leafRef = null;
//NOW can be #tree GC

Timers

Timers are a common source of memory for (var i = 6; 1 < 90000; i++) {
leaks. var buggyObject = {
callAgain: function() {
Anything you're repetitively doing in a var ref = this;
timer should ensure 1t isn't maintaining var val = setTimeout(function() {
refs to DOM objects that could ref.callAgain();
accumulate leaks if they can be GC'd. }, 90000);
}
}
If we run this loop.. buggyObject.callAgain();
This introduces a memory leak: buggyObject = null;

ES6 WeakMaps

WeakMaps help us avoid memory leaks by holding references to properties
weakly. If a WeakMap is the only objects with a reference to another object,
the GC may collect the referenced object.

In the next example, Person is a closure storing private data as a strong

reference. The garbage collector can collect an object if there are only weak
or no references to It.

WeakMaps hold keys weakly so the Person instance and its private data are
eligible for garbage collection when a Person object is no longer referenced
by the rest of the app.

ES6 WeakMaps

var Person = (function() {

var privateData = {}, // strong reference
privateld = 0;

function Person(name) {

Object.defineProperty(this, "_id", { value:

privateld++ });

privateData[this._id] = {
name: name
|
}

Person.prototype.getName = function() {
return privateData[this._id].name;

h

return Person;

0)

Avoid memory leaks
by holding refs to
properties weakly.

var Person = (function() {
var privateData = new WeakMap();

function Person(name) {
privateData.set(this, { name: name });

}

Person.prototype.getName = function() {
return privateData.get(this).name;

|

return Person;

10),

Cheat sheet

Design first.
Code from the design.
Then profile the result.

Optimize at the right time.

Premature optimization i1s
the root of all evil.

Donald Knuth

Memory Checklist

-4

Memory Checklist

e |s my app using too much memory?

Timeline memory view and Chrome task manager can help you identify if you're using too

much memory. Memory view can track the number of live DOM nodes, documents and JS
event listeners in the inspected render process.

Memory Checklist

e |s my app using too much memory?
e |s my app free of memory leaks?

The Object Allocation Tracker can help you narrow down leaks by looking at JS object
allocation in real-time. You can also use the heap profiler to take JS heap snapshots, analyze
memory graphs and compare snapshots to discover what objects are not being cleaned up by

garbage collection.

Memory Checklist

e |s my app using too much memory?
e |s my app free of memory leaks?

e How frequently is my app forcing garbage collection?

If you are GCing frequently, you may be allocating too frequently. The Timeline memory view
can help you identify pauses of interest.

Good rules to follow

Avoid long-lasting refs to DOM elements you no longer need
Avoid circular object references

Use appropriate scope

Unbind event listeners that aren't needed anymore
Manage local cache of data. Use an aging mechanism to get
rid of old objects.

V8 Deep Dive.

Why does #perfmatter?

Silky smooth apps.

Longer battery life
Smoother interactions
Apps can live longer

Nothing is free.

You wi

N o W T— o Task Manager - Google Chrome

Task Memoryv CPU Network | Process ID

- GPU Process 419 MB 0.0 N/A 46802
@ Browser 175 MB 1.7 0 46799
Tab: WebGL Water 160 MB 0.0 0 46844
.- Tab: Eye texture raytracing demo 160 MB 0.0 0 46840
@ Tab: Chrome 148 MB 0.2 0 46812
[Tab: Circles 147MB 0.6 0 46933

| always pay a price for the resources you use.

JavaScript Execution Time

-4

G() gle Popular sites
apps

50-70% of 20-40% of

time In V8 time In V8

16ms to do everything.

Workload for a frame:

S~

He's dead, Jim!
ir th for th b terminated f ther reason. To continue, reload or go to another page.
AW, Snap! r the process for the webpage was terminated for some o inu g pag

Learn more

Something went wrong while displaying this webpage. To continue, reload or go to
another page.

If you're seeing this frequently, try these suggestions.

Performance vs. Memory

My app’s tab is using a gig of RAM. #worstDayEver

So what? You've got 32GB on your machine!

Yeah, but my grandma's Chromebook only has 4GB. #stillSad

When it comes down to the age-old performance vs. memory tradeoff, we
usually opt for performance.

Memory management basics

Core Concepts

What types of values are there?

How are values organized in memory?
What is garbage?

What is a leak?

Four primitive types

. boolean
> true or false

. number
- double precision IEEE 754 number
- 3.14159
string
- UTF-16 string
- "Bruce Wayne”

objects
- key value maps

An object.

object[key] = value;

String only -

Think of memory as a graph

The value graph Root could be browser “window” or
Global object of a Node module.

i

The graph starts with a root. You don't control how
this root object is GC.

A value's retaining path(s)

oo ®

Removing a value from the graph

o Sxe

What is garbage?

e Garbage: All values which cannot be reached from the root node.

What is garbage collection?

1. Find all live values
2. Return memory used by dead values to system

A value's retained size

'é}'\@

A value's retained size

® e

—

A value's retained size

oo *

What is a memory leak?

Gradual loss of available
computer memory

When a program repeatedly fails to return memory
obtained for temporary use.

Leaks in JavaScript

e Avalue that erroneously still has a retaining path
@) Programmer error

JavaScript

email.message = document.createElement("div");

display.appendChild(email.message);

Leaking DOM Node

(

Native Reference

Div Node

Child Node

A

Child Node

+

.
.
'A

Child Node

Leaks in JavaScript

Are all the div nodes
actually gone?

JavaScript
// e o o

display.removeAllChildren();

Leaking DOM Node

“"™ Div Node

Whoops. We cached a reference from the

message object to the div node. Until the
email 1s removed, this div node will be
pinned in memory and we've leaked it.

Memory Management Basics

e Values are organized in a graph
e Values have retaining path(s)

e Values have retained size(s)

V8 memory management

Where is the cost In allocating memory?

e Every call to new or implicit memory allocation
o Reserves memory for object
o Cheap until...
e Memory pool exhausted
o Runtime forced to perform a garbage collection
o Can take milliseconds (')
e Applications must be careful with object allocation patterns
o Every allocation brings you closer to a GC pause

Young generation 0Old generation

How does V8 manage memory? By young and old we mean how
long has the JS value existed for.

e Generational After a few garbage collections, if
o Split values between young and old the value survives (ie there’s a

o Overtime young values promoted to old . .
retaining path) eventually it gets
promoted to the old generation.

||~.

How does V8 manage memory? DevTools Timeline shows the GC event on it.
Below Is a young generation collection.

e Young Generation o 1765 2.125 2.475 2.825 3.1
o Fast allocation
o Fast collection
o Frequent collection

1.27s 1.27s 1.27s 1.28s 1.28s 1.2¢€

v
U

I

GC Event - Details

Duration 0.070ms (at 1.27 s)
Collected 1.9 MB
Used Heap Size 2.6 MB

Call Site stack frame @ frame.js:22

How does V8 manage memory? Some of the old generation’s
collection occurs in parallel with

your page’s execution.
e 0ld Generation

o Fast aIIocatlor_l e Parts of collection run concurrently with mutator
o Slower collection o Incremental Marking

o Infrequently collected o Mark-sweep
o Return memory to system

o Mark-compact
o Move values

How does V8 Mmanage memory? After GC, most values in the young generation
don’t make it. They have no retaining path

because they were used briefly and they're gone.

e Why is collecting the young generation faster
o Cost of GC is proportional to the number of live objects

1541 &

Young Generation Collection Old Generation Collection

Young Generation In Action

o -

Young Generation In Action

Assume the To Space started off
empty and your page starts
allocating objects..

|
_

From Space

Young Generation In Action

S
e

From Space

Young Generation In Action

e
-

From Space

Young Generation In Action

N
W e

From Space

_ _ Until this point, everything has been
Young Generation In Action fast. There’s been no interruption in

your page’s execution.

L
-

From Space

Young Generation In Action Then we do new E() and..it’s too big. We
moved closer to this GC pause and we’
ve actually just triggered it.

_E

From Space

Young Generation In Action So, E doesn’t happen. It’s kind of paused. The

page is paused, everything halts and the
collection is triggered.

Ml—
e e
-

From Space

Young Generation In Action

To Space

Young Generation In Action

Labels are flipped internally and then
the live values are found.

To Space

Young Generation In Action

A and C are marked. B and D are not
marked so they're garbage. They're not
going anywhere.

To Space

Vo

Young Generation In Action o | |
This is when the live values are copied

from the From Space to the To Space.

To Space

Vo

Young Generation In Action

So here we've done the copy. We've done
the collection. Copied the live objects
from one semispace to the next.

Young Generation In Action

There’s no other work done to it. It's just
ready for use the next time there’s a
collection that needs to happen.

From Space

Young Generation In Action

At this point, your page is resumed and the
object E is allocated.

From Space

How does V8 manage memory?

e Each allocation moves you closer to a collection
o Not always obvious when you are allocating

e Collection pauses your application
o Higher latency
o Dropped frames
o Unhappy users

Remember: Triggering a
collection pauses your app.

Performance Tools

performance.memory

Great for field measurements.

performance.memory

jsHeapSizeLimit the amount of memory (in bytes) that the
JavaScript heap is limited to

performance.memory

jsHeapSizeLimit the amount of memory (in bytes) that the
JavaScript heap is limited to

totalSSHeapSize the.z amount of memory (in bytes) currently
being used

performance.memory

jsHeapSizeLimit the amount of memory (in bytes) that the
JavaScript heap is limited to

totalSSHeapSize the.z amount of memory (in bytes) currently
being used

the amount of memory (in bytes) that the
JavaScript heap has allocated, including free
space

usedJSHeapSize

Chrome DevTools

DevTools Memory Timeline

Q Elements Network Sources | Timeline ' Profiles Resources Audits Console Polymer Gulp >x= £ O, x
® © ¥ ¥ il @stacks ¥ Memory
1000 ms 2000 ms 3000 ms 4000 ms 5000 ms 6000 ms 7000 ms | 8000 ms 90'0 ms
I OUI R AR e A | I A LT | |
7.4 MB - 93.6 MB | |] N
RECORDS 7600 ms 7800 ms 8000 ms 8200 ms 8400 ms 8600 ms 88C | »
» = Timer Fired (161 > [
(161) [Range: 7.33s - 8.73
® Recalculate Sty... [c
®m Update Layer T... [
MEMORY

M Used JS Heap [2282
B Documents [2:2] \

™ Nodes [1524:1927] "
1 Listeners [44:44]

11661.544 ms Scriptin
. B 0.162 ms Rendering
B 0.035 ms Painting

1.149 ms Other
738.564 ms Idle

Force GC from DevTools

Snapshots automatically force GC. In Timeline, it can be useful
to force a GC too using the Trash can.

Q [] Elements Network Sources | Timeline| F
@ © Vv ¥ 1l

Capture stacks l 1000 ms .

Capture memory

Memory distribution
Taking heap snapshots

® 0o Developer Tools - http://debuggingmemoryleaks.eu01.aws.af.cm/example/9 g"
Elements Resources Network Sources Timeline - Audits Console DemoPanel

Select profiling type

(®) Collect JavaScript CPU Profile

CPU profiles show where the execution time is spent in your page's
JavaScript functions.

O Take Heap Snapshot

Heap snapshot profiles show memory distribution among your
page's JavaScript objects and related DOM nodes.

() Record Heap Allocations

Record JavaScript object allocations over time. Use this profile type
to isolate memory leaks.

(Start \)

Results
Reachable JavaScript Objects

® 0o Developer Tools - http://debuggingmemoryleaks.eu01.aws.af.cm/example/9 %
Elements Resources Network Sources Timeline | Profiles | Audits Console

@ Profiles ICIass filter J
3 Constructor | Distance Objects Count | Shallow Size
HEAP SNAPSHOTS P (string) 2 2809 11% 64075604 98% 64075604 98% .
i Snapshot 1 » HTMLD.... |2 134 1% 2672 0% 64004 788 98%
'§95 1.3 MR » Docume... |1 1 0% 0 0% 63009372 96%
- » (compil... |3 1465 6% 289420 0% 404216 1%
P (array) 2 2558 10% 273384 0% 292300 0%
> (closure) |2 1975 8% 71100 O% 271048 0%
P (system) 2 8032 31% 146008 0% 268504 0%
P Object 2 1028 4% 18596 0% 138124 0%
P system... |3 74 0% 2368 0% 54660 0%
»Window / |1 1 0% 40 0% 32428 0%
»Internal... |3 12 0% 192 0% 21772 0%
» Windnw 1 1. 0% an__ N% 14012 0%
Object's retaining tree =
Object Shallow Size Retained Size

Summary v All objects

Switching between views

Summary groups by constructor name
Comparison compares two snapshots
Containment bird’s eye view of the object structure

Q. Elements Network Sources Timeline | Profiles | Resources

® O v Summary Class filter
| - Comparison pistance Objects Count
Profiles Containment 51 112791 23%

2| 65435 14%
1 25760 &L %«

HEAP SNAPSHOTS] > (closure) ’
b NDhiact

Understanding node colors

® O O Developer Tools - https://developers.google.com/
Elements Resources Network Sources Timeline —ﬁ

ye]_]_ OW Object has a JavaScript reference on it

@ Profiles |Class filter |
Constructor Dist
HEAP SNAPSHOTS ST 5

> Arrg

¥ Detached DOM tree / 27 entries
vDetached DOM tree / 27 e
» [20] :: HTMLDivElement
v [1] :: ATHEDIVELEREnt ' 4
native :: Detg D3
T Array @26269s
»__proto__ :: HTMLDiv|3
5

4

Detached node. Referenced from one with
red a yellow background.

properties :: (objec
»[2] :: H ent
Object's retaining tree
Object
v [1] in Detached DOM tree / 27
wnative in HTMLDivElement @16
pdetached in Window / googl
[20] in Detached DOM tree
pnative in HTMLDivElemen|
pnative in HTM
pnative in
pnative in HTM

Reading results

Summary
¢ Elements Resources Network Sources Timeline ’ Profiles ‘ Audits Console Redirect Angular)S PageSpeed
@ Profiles Class filter
Constructor Distance Objects Count | Shallow Size ‘Retained Size v
HEAP SNAPSHOTS » (compiled code) 3 5678 5% 1290600 27% 1801128 38%
» (array) 2 14307 13%\ 1264912 26%| 1541632 32%
» (closure) 2 8960 8% 322560 7% 1384460 29%
» (system) 2 28965 26% ‘ 597784 13% 1338092 28%
» Object 2 4740 4% 82988 2% 1117748 23%
» Window / http://localhost:3000/exam... | 1 8 0% \ 320 0% 717404 15%
» Array 2 1691 1% 27072 1%| 630380 13%
¥ item 2 20004 18% 320060 7% 560136 12%
» Item @39957 2 16 0% 359880 8%
p Item @39951 2 16 0% 200040 4%
» Item @39953 2 16 0% 112 0%
» Item @65599 3 | 12 0% 104 0%
» Item @179537 4 16 0% 32 0%
» Item @179539 4 | 16 0% 32 0%
Object's retaining tree =
Object ‘Shallow... | Retaine... ‘Dista|
vstringCache in Window / localhost:3000/example/3 @36393 40 0% 570140 1
\ 12% |
» global in @36587 30860 2
1%
| |
\ \

Distance
Distance from the GC root.

If all objects of the same type are at the same
distance and a few are at a bigger distance, it's
worth investigating. Are you leaking the latter ones?

Summary

Constructor

¥ Class filter
Distance

» (array)
» (closure)

» (compiled c...

» Object

» (system)
»system / C...
» (regexp)

» (string)

» InternalArray
» Array

» (concatenat...

W N W NN WN = WINN

Retained memory

Memory used by objects and the
objects they are referencing.

Retained Size v
392 34% 4327728 47%
)24 10% 3515640 38%
280 22% 2875108 31%
3906 2% 2632980 28%
376 15% 2474832 27 %
36 1% 1410864 15%
)00 0% 434488 5%
272 4% 417272 4%
)24 0% 343496 4%
12 1% 288264 3%
40 1% 92384 1%
48 0% 68616 1%
)80 0% 51756 1%
500 0% 43892 0%
L76 0% 41252 0%
L76 0% 32908 0%
)60 0% 28960 0%
38 0% 28788 0%
L76 0% 27424 0%
584 0% 25000 0%
192 0% 20228 0%

s Count

Shallow Size

Shallow size

4609 13%
1699 6%

Size of memory held by object ‘s 5.

Even small objects can hold large amounts of 4 523 Sj

memory indirectly by preventing other objects from 3277 2%
being disposed. 32 0%
40 0%

37 0%

4 0%

4 0%

3114392
885924
2047280
208 896
1396 876
90636
27000
417272
1024
72512
65 540
648

980

500

176

176

34%
10%
22 %
2%
15%
1%
0%
4%
0%
1%
1%
0%
0%
0%
0%
0%

Summary ¥ Class filter
Constructor Distance Objects C
ConStru CtOr » (closure) 2 24 6(
; . » (compiled code) 3 11 6¢
All objects created with @ |»obic 1 9o
» (system) 2 64 9!
- :
specific constructor. ;system] Con 320
» (string) 2 14 0.
» InternalArray 3 1
» Array 2 45:
» (concatenated ... 3 32;
»d 3 '-
» Window 1 :
»c 3
» Window / http... 1
» Window / http... 1
»system / JSArr... 5
» JSONSchemaVa... 5

Object's retaining tree

® O O Developer Tools - https://developers.google.com/chrome-developer-tools/docs /heap-profilin
Elements Resources Network Sources Timeline m Audits Console DemoPanel

. . Profil Collec
rofiles
Constructor Distance | Objects Count | Shallow Size ~Retained Size -
Information to understand why the object susios 5[, —
— v Collection @183255 3 48 0% 400248
s e »items :: Array (4 16 0% 400 200
was not collected S R
L) pmap :: system /| 4 40 0% 104
» Collection @183253 3 48 0% 200 144
» Collectionitem 3 25001 6% 400012 2% 500 140
» ScriptCollectedEvent 10 1 0% 12 0% 828
el LML COLocton 2 I — Lo -— L2
Object's retaining tree
Object IDistancess| Shallow Size Retained Size
v items in Collection @183255 3 48 0% 400248
v [1] in Array @183251 2 16 0% 400280
»holderl in Window @131051 |1 40 0% 770308
»value in system / Property| 3 16 0% 24
>0 in system / Box @649399 | 4 8 0% 8
»1 in (object elements)[] @187 3 16 0% 16

H,>X Q @ Q‘Summary

¥ All objects

Closures

Tip: It helps to name functions so you
can easily find them in the snapshot.

| Class filter |

Constructor
¥ (closure)

p function 1C() @143221

1Cclosures.js:8
function [CIS {
, return largeStr;

NOW W W w whN

Distance

22371 14%

' Objects Co... Shallow Size

805 356
36
36
36
36

36
26

6%
0%
0%
0%
0%

0%
N o/

function createlLargeClosure() {
var largeStr = new Array(1000000).join('x");
var 1C = function() { //this IS NOT a named function
return largeStr;
¥

return 1C;

function createlLargeClosure() {
var largeStr = new Array(1000000).join('x");
var 1C = function 1C() { //this IS a named function
return largeStr;
¥

return 1C;

Profiling Memory Leaks

Three snapshot technique

What do we expect?

New objects to be constantly and consistently collected.

Start from a steady state.

Checkpoint 1

We do some stuff.

Checkpoint 2

We repeat the same stuff.

Checkpoint 3

Again, what do we expect?

All new memory used between Checkpoint 1 and Checkpoint 2
has been collected.

New memory used between Checkpoint 2 and Checkpoint 3 may
still be in use in Checkpoint 3.

The Steps

Open DevTools

Take a heap snapshot #1

Perform suspicious actions

Take a heap snapshot #2

Perform same actions again

Take a third heap snapshot #3

Select this snapshot, and select

"Objects allocated between Snapshots 1 and 2"

Elements Resources

Network Sources Timeline | Profiles | Audits Console

(%
(i N i| Profiles

HEAP SNAPSHOTS

=

Snapshot 1

%

“t| Snapshot 2
H9%| 1.4MB

Class filter
Constructor Distance Objects ... ' Shallow Size R
» HTMLDivElement @56531 3 20 0%
» HTMLDivElement @56533 3 20 0%
vHTMLDivElement @56535 3 20 0%
» native :: Detached DOM tree / 4 entries @2927992062 4 0 0%
»__proto__ :: HTMLDivElement @45367 4 16 0%
» HTMLDivElement @56537 3 20 0%
» HTMLDivElement @56539 3 20 0%
» HTMLDivElement @56541 5 20 0%
» HTMLDivElement @56545 5 20 0%
» HTMLDivElement @56549 5 20 0%
w UTMI NS VET Amandt AECEED r faVa) nos
Object's retaining tree
Object 'Shallow Size | Retained Size
v [37] in Array @44265 16 0% 3952 O
» leakedNodes in Window @9191 40 0% 20868 1
v [3] in Detached DOM tree / 4 entries @2927992062 0 0% 40 O
p native in HTMLDivElement @56535 20 0% 60 C
p native in TeXE @56551 20 0% 20 O
» native in HTMLDivElement @56549 20 0% 20 O

Evolved memory profiling

Object Allocation Tracker

Q Elements Network Sources Timeline | Profiles | Resources Audits Console Polymer Gulp = # IEIA>

® O

Select profiling type

Q Collect JavaScript CPU Profile
CPU profiles show where the execution time is spent in your page's JavaScript functions.

Q Take Heap Snapshot

Heap snapshot profiles show memory distribution among your page's JavaScript objects and related DOM
nodes.

@ Record Heap Allocations
Record JavaScript object allocations over time. Use this profile type to isolate memory leaks.

Object Allocation Tracker

The object tracker combines the detailed snapshot information of the heap
profiler with the incremental updating and tracking of the Timeline panel.
Similar to these tools, tracking objects’ heap allocation involves starting a

recording, performing a sequence of actions, then stopping the recording for
analysis.

The object tracker takes heap snapshots periodically throughout the
recording and one final snapshot at the end of the recording. The heap
allocation profile shows where objects are being created and identifies the
retaining path.

X Elements Resources Network Sources Timeline | Profiles | Audits Console PageSpeed Angular)S

@I Profiles s.ols 10.00's lS.OOs 20.00's 25.00's
HEAP TIMELINES 500 KB
giss| Snapshot 1
- Class filter
Constructor Distance Objects C... | Shallow Size ‘Retainec
» (closure) 2 3 0% 108 0% 30002
» system / Context 3 3 0% 84 0% 30001
» (string) 4 3 0%| 3000036 43%| 30000
» (comniled code) 6 6 0% 864 0O% 29
Object's retaining tree
Object Shallow Size Retained Size DI

g >= Q & N Summary v All objects

v ? Selected size: 2.9 MB

memory allocations. Taller = more
blue bars [gsses

grey ozlacl deallocated

X Elements Resources Network Sources Timeline .Profiles ‘ Audits Console PageSpeed Angular)S
: .0 10.00 I . 20. 2
@ Profiles 5 Ols s 5.00's 0.00s 5

HEAP TIMELINES ' 500 KB
gzl Shapshot 1
B8 6.7 MB
Class filter

Constructor Distance Objects C... | Shallow Size
» (closure) 2 3 0% 108 O
» system / Context 3 3 0% 84 O
» (string) 4 3 0% 3000036 43
» (comniled code) 6 6 0% K64 (O

Nhiact'es ratainimsa $ran

Adjustable timeframe
selector

® 006 Developer Tools - http://octane-benchmark.googlecode.com/svn/latest/index.html| "
Q [J Elements Network Sources Timeline | Profiles| Resources Audits Console Gulp x £ 0O,
® O Summary Y _Class filter
N 5.00s | | 1000s 15.00s
HEAP TIMELINES 100KB '
';'i'{j ap . 0 |
=2 = Constructor Distance Objects Count Shallow Size Retained Size v
» (system) 4 187 0% 4564 0% 13840 0%
» (string) 4 50 0% 1056 0% 1056 0%
» (number) 4 54 0% 648 0% 648 0%
» Object 5 2 0% 9% 0% 96 0%
» Array 6 4 0% 64 0% 76 0%
v BenchmarkResult 4 1 0% 56 0% 68 0%
v BenchmarkResult @4005 4 56 0% 68 0%
vbenchmark :: Benchr 4 48 0% 120 0%
»__proto__ :: Ben 3 12 0% 160 0%
»Setup :: functio 5 36 0% 36 0%
» TearDown :: func 5 36 0% 36 0%
Retainers =
Object Distance A Shallow Size Retained Size
v [@] in Array @47135 3 16 0% 28 0%
v benchmarks in BenchmarkSuite @47145 2 24 0% 380 0%
»RayTrace in Window / octane-benchma 1 40 0% 2257452 17%
v [3] in Array @45239 3 16 0% 256 0%
vsuites in function BenchmarkSuite 2 36 0% 1028 0%
»BenchmarkSuite in Window / octa 1 40 0% 2257452 17%
»constructor in BenchmarkSuite @ 3 12 0% 36 0%
2 in [] @45185 4 20 0% 20 0%
4 in (map descriptors) [] @45293 5 124 0% 124 0%
»0 in (object properties)[] @28796 3 32 0% 32 0%

® 06 Developer Tools - http://octane-benchmark.googlecode.com/svn/latest/index.html A

| 4
Q [] Elements Network Sources Timeline ! Resources Audits Console Gulp x £ 0O,
® O Summary ¥ Class filter Selected size: 270 KB
N— 5.005 | | 1000s 15.00 20.00s 25.005.
HEAP TIMELINES 100 KB |
Snapshot 1 Save |
EiE] 12.4MB
Constructor Distance Objects Count Shallow Size Retained Size v
» (system) 4 187 0% 4564 0% 13840 0%
»(string) 4 50 0% 1056 0% 1056 0%
» (number) 4 54 0% 648 0% 648 0%
» Object 5 2 0% 96 0% 96 0%
» Array 6 4 0% 64 0% 76 0%
v BenchmarkResult 4 1 0% 56 0% 68 0%
v BenchmarkResult @400% 4 56 0% 68 0%
wvbenchmark :: Bench 4 48 0% 120 0%
»__proto__ :: Ben 3 12 0% 160 0%
»Setup :: functio 5 36 0% 36 0%
» TearDown :: func 5 36 0% 36 0%
Retainers =
H Object Distance A | Shallow Size Retained Size
eap v [0] in Array @47135 3 16 0% 28 0%
v benchmarks in BenchmarkSuite @47145 2 24 0% 380 0%
Contents »RayTrace in Window / octane-benchma 1 40 0% 2257452 17%
v [3] in Array @45239 3 16 0% 256 0%
vsuites in function BenchmarkSuite 2 36 0% 1028 0%
»BenchmarkSuite in Window / octa 1 40 0% 2257452 17%
» constructor in BenchmarkSuite @ 3 12 0% 36 0%
2 in [] @45185 4 20 0% 20 0%
4 in (map descriptors)[] @45293 5 124 0% 124 0%
»0 in (object properties)[] @28796 3 32 0% 32 0%

Allocation Stack Traces (New)

DevTools Settings > Profiler > Record Heap Allocation
Stack Traces

Start Octane 2.0

Welcome to Octane 2.0, a JavaScript benchmark for the modern web. For more accurate results, v before running the test.

~ /M T PN N WENFUNINI FUY - WS TSN WS = W G _—————— SRRV TR WSS WA VN TS——— V- - ok rm

Settings General

I General Profiler
¢/ Show advanced heap snapshot properties
¢/ Record heap allocation stack traces

High resolution CPU profiling

m Paul Lewis
Detached Nodes

Q Elements Network Sources Timeline | Profiles | Resources Audits Console Polymer Gulp = X O, x
® O Summary v Class filter Selected size: 685 MB
Profiles 10.00s 20.00s 30.00s 40.00s 50.00s
HEAP TIMELINES
g&ssl Snapshot 1 Ll |
Stk 685MB . : : . :
Constructor Distance Objects Count | Shallow Size Retained Size v
» Array 2 1649 0% 52768 0% 645425752 90%
» (array) 2 526527 33% 424 875808 59% 425403048 59%
v SlowPurchase 3| 500000 31% 12000000 2% 424000000 59%
» SlowPurchase @204079 3 24 0% 848 0%
» SlowPurchase @204085 3 24 0% 848 0%
» SlowPurchase @204091 3 24 0% 848 0%
» SlowPurchase @204097 3 24 0% 848 0%
» SlowPurchase ©204103 3 24 0% 848 0%
» SlowPurchase @204109 3 24 0% 848 0%
Retainers | Allocation stack
$Object.defineProperty.get extensions::utils:103
dispatchOnMessage extensions::messaging:299
(root)

Visualize JS processing over
time

JavaScript CPU Profile (top down)

Shows where
CPU time 1s
statistically
spent on your
code.

® 006

Developer Tools - http://octane-benchmark.googlecode.com/svn/latest/index.html|

® O

Profiles

CPU PROFILES

Q [Elements Network Sources Timeline | Profiles | Resources Audits Console Gulp = ¥ 0O L
Tree (Top Down) v ©& X
Self v Total Function
38544.5ms 61.71% | 38544.5ms 61.71% | (idle)
2930.9ms 4.69% | 2930.9ms 4.69% (garbage collector)
866.1ms 1.39% 866.1ms 1.39% | (program)

50ms 0.01% 5.0ms 0.01% /A http://octane-benchmark.googlecode.com/svn/l... mandreel.js:1
1.0ms 0.00% 1.0ms 0.00% http://octane-benchmark.googlecode.com/svn/late... deltablue.js:1
1.0ms 0.00% 6.0ms 0.01% »http://octane-benchmark.googlecode.com/svn/latest/b... box2d.js:1
1.0ms 0.00% 9.1ms 0.01% »DOMContentLoaded jquery.js:907
1.0ms 0.00% 18.1ms 0.03% »chrome-extension://mkmaajnfmpmpe... content script compiled.js:1
1.0ms 0.00% 6.0ms 0.01% | »(anonymous function) extensions::messaging:1
1.0ms 0.00% 2.0ms 0.00% »(anonymous function) VM1324:1
Oms 0% 1.0ms 0.00% »http://octane-benchmark.googlecode.com...bootstrap-transition.js:1

0Oms 0% 1.0ms 0.00% | »http://octane-benchmark.googlecode.com/svn/l... gbemu-partl.js:1

Oms 0% 2.0ms 0.00% | » A dispatchOnDisconnect extensions::messaging:285

Oms 0% 6.0ms 0.01% »http://octane-benchmark.googlecode.com... typescript-compiler.js:1

Oms 0% 1.0ms 0.00% | »http://octane-benchmark.googlecode.com/svn/latest/cr... crypto.js:1

Oms 0% 7.1ms 0.01% »DebuggerScript.getAfterCompileScript (program):51

Oms 0% 2.0ms 0.00% | »http://octane-benchmark.googlecode.com/svn/la... earley-boyer.js:1

Oms 0% 8.1ms 0.01% | »http://octane-benchmark.googlecode.com/svn/latest/js... jquery.js:1

Oms 0% 16.1ms 0.03% »http://octane-benchmark.googlecode.com/svn/latest/pd... pdfjs.js:1

Oms 0% 19227.9ms 30.78% | » RunStep base.js:147

Oms 0% 568.6ms 0.91% »loop3 earley-boyer.js:4286

Oms 0% 8.1ms 0.01% »(anonymous function) earley-boyer.js:4647

Oms 0% 10.1ms 0.02% »test earley-boyer.js:4618

Oms 0% 89.7ms 0.14% | »loop2 earley-boyer.js:4272

Oms 0% 21.2ms 0.03% | » A RunNextBenchmark base.js:367

Oms 0% 8.1ms 0.01% »BglL_earleyzd2benchmarkzd2 earley-boyer.js:4641

Oms 0% 29.2ms 0.05% | »sc_loopl_98 earley-boyer.js:4258
23.2ms 0.04% | »deriv_trees earley-boyer.js:4254

Select “Chart” from the drop-down

hart
Q Elements Ne evy (Bottom Up) e | Profiles Resources Audits Console Polymer Gulp
® O v Tree (Top Down) © X
_ TTTTTTTSelf T v Total Function
Profiles 2400.7ms 51.22% 2400.7ms 51.22%| (dle)
CPU PROFILES 190.8 ms 4.07% 190.8ms 4.07%| (garbage collector)
50.2ms 1.07% 50.2ms 1.07% | (program)
Profile 1 Save 1.0ms 0.02% 1.0ms 0.02%| /. dispatchOnDisconnect
Oms 0% 1.0ms 0.02% | »Lazarus.Content.onBlur
Oms 0% 1.0ms 0.02% | »Lazarus.Mouse.onMouseMove
Oms 0% 1.0ms 0.02% | »Lazarus.Content.onFocus
O ms 0% 3.0ms 0.06% | »dispatchOnMessage
Oms 0% 1.0ms 0.02% wLazarus.Mouse.onMouseOQOut
Oms 0% 3.0ms 0.06% | »Lazarus.Content.onClick
O ms 0%/| 2031.2ms 43.34% | »onclick
O ms 0% 3.0ms 0.06% | »onclick

' ® 006 Developer Tools - http://octane-benchmark.googlecode.com/svn/latest/index.html %
Q Elements Network Sources Timeline | Profiles| Resources Audits Console Polymer Gulp >x 8 O i
® O v Chart

, Heavy (Bottom Up) aps J.00s 8.00's 10.00s 12.00s 14.00's
Profiles Tree (Top Down) | |
CPU PROFILES 1 P
PrOfiIe 1 ——— .) - .'* b n__»___.‘.ﬂ.-m,.‘«,ﬁ . . — ‘ " . VAl g A
3800 ms 4000 ms 4200 ms 4400 ms 4600 ms 4800 ms 5000 ms 5200 ms 5400 ms
RunStep RunStep
RunNextBenchmark RunNextBenchmark
Be...rk RunNextBenchmark BenchmarkSuite.RunSingleBenchmark
Me...e BenchmarkSuite.RunSingleBenchmark Measure

d..e Me...e Measure en..t encrypt
de...e d... deltaBlue | |

Name encrypt

Self time 1.0 ms

Total time 97.3ms

URL crypto.js:1684

Aggregated self time 4.098 ms
Aagaregated total time 1.01 s

Flame Chart View
Visualize JavaScript execution paths

X Elements Resources Network Sources Timeline ’Proﬁles‘Audits Console Layers Illuminations Backbone Promises PageSpeed Terminal

Profiles 500ms. 1.00s 1.50s 2.00s 2.50s 3.00s 3.5(D 4.00s 4505 5.00s
St Al bt o by o okt dhe
Self sime i
Total time 34.1ms

Aggregated self time 1.89s
Aggregated total time 1.89s

[d
set Ve | s [||}
ed pdid J 0 (gar |
Wc T] s fi
load 0 fi o fi fi
| | j o s il s | fiff
\ | EF 1 (R) fi fi fi fi o fi
a.(anonymou... s fi fi fi fi s s fi
' EO o fi fi fi h... ... fi
] E.push s fi fi d3.g... h.visit
| a.(anonymou... . h.add fi
callSubscrib... getSlidelD callSubscr... d3.ge...

deliverMessage | (anonymous fu... deliverMes. .. n.tick

The Flame Chart

The Flame Chart provides a visual representation of JavaScript processing
over time, similar to those found in the Timeline and Network panels. By
analyzing and understanding function call progression visually you can gain
a better understanding of the execution paths within your app.

The height of all bars in a particular column is not significant, it simply
represents each function call which occurred. What is important however is

the width of a bar, as the length is related to the time that function took to
execute.

Visualize profiler data against a time scale

€« C' [hellorun.helloenjoy.com & I C ol | & =
CREDITS SHARE
H II "‘R
AN HTMLSE GAME BY HELLOENJOY
SETTINGS PRESS SPACE TO START FULL SCREEN
% Elements Resources Network Sources Timeline | Profiles | Audits Console Layers Backbone Promises Illuminations Terminal PageSpeed
. 500 ms 1.00s 1.505 2.00s 2.50s 3.00s 3.50s 4.00s 4.50s f soos | 5.50s 6.0
Profiles
CPU PROFILES ‘ i j] , f I f | o | |
I |! 1 ._la
(18] [| [y |» '1 i 1 | Al ,||||Jl' L} |H|| | |\|| | ||; l AN I Aadeh |
= Profile 1 '“\ ___.____l____ | | x___|_“l_l_i_i_‘"_l_,_,_.‘ll_.l— A'_]_t-i___‘_l_l_ﬂ_l_‘_j _‘__‘_ ______________________ \m_ |_ _______|~ ‘]._____ il ‘ _‘__‘__.________I 1 } , ‘._._‘)_ I‘_‘ _[_‘ “IJ: _l_ _l_}_l__l____’__v_l_ _l
5260 ms 5280 ms 5300 ms 5320 ms 5340 ms 5360 ms 5380ms 5400 ms 5420 ms 5440 ms 5460 ms 5480 ms 5500 ms 5520 ms 5540 ms 5560n
Al Profile 2
Profile 3
|
. m
HEL... H... HELL...
..GUl.setScreen |
...Game.stop HE... .setText |
...Game.onGate HE... HELLOR...
H

..Cates.update HE...
" HELLORUN.App.update
H... HEY.Time.update

(idle) (idle) (idle) (idle) (idle) (idle) (idle) (anonymous function)

Gdle) Gdle)

adiey 17 Gdie)

..update
...App.update
...update
(anonymou...

Is optimization worth the effort?

GMail's memory usage (taken over a 10 month period)

4x
MB

3X

2X

Memory leak
<« fixes start
to roll out

Chrome GC

/regressions

B 99th %ile

I 95th %ile
90th %ile

B median

2012

Through optimization, we reduced our
memory footprint by 80% or more for
power-users and 50% for average users.

Loreena Lee, GMall

Resources

@ chrome

DEVTOOLS + MULTI-DEVICE v PLATFORM v Cl

JavaScript Memory Profiling

JavaScript Memory Profiling

JavaScript Memory Profiling
A memory leak is a gradual loss of available computer memory. It occurs when a program

repeatedly fails to return memory it has obtained for temporary use. JavaScript web apps can

often suffer from similar memory related issues that native applications do, such as leaks and
Contents
bloat but they also have to deal with garbage collection pauses.

Official Chrome DevTools docs

devtools.chrome.com

In general, there are three questions you will want to answer when you think you have a
memory leak:

thlorenz / v8-perf & 5minfork @®Watch~ 12 #Star 183 YFork 2

Notes and resources related to v8 and thus Node.js performance https://thlorenz.github.io/v8-perf/

<> Code
10 commits 3 branches 0 releases 1 contributor
@ Issues 6
ﬁ P branch: master v v8-perf / + = {1 Pull Requests O
note about function closures
. 4~ Pulse

V8 Performance & Node.js

https://thlorenz.github.io/v8-perf/

B performance-profiling.md dox after working through most referenced materials 2 months ago
<p Download ZIP

2 runtime-functions.md dox after working through most referenced materials 2 months ago

Wswsma

CODING PERFORMANCE

css Writing Fast, Memory-Efficient

HTML

Writing Memory-efficient JavaScript

http://www.smashingmagazine.com/2012/11/05/writing-fast-
memory-efficient-javascript/

ASyou develop, 1I you

Android / \
care about memory usage £ :
2 = LightCMS
alade Sign Up for Free!

Design Patterns and Performance’ you THE TH EM E

should be aware of some

Elements Resources Network Sources Timeline Console | Heap Profiler ~ | Layers CPU Profiler Audits SS, Profiler

. Detached Withrpatchrapplied——

Constructor # New # Deleted # Delta mneed Size | Size Delta
HEAP SNAPSHOTS ¥ Detached DOM tree / 13 entries 1 0 +1 0 0| 0
— vDetached DOM tree / 13 entries @3519317322 . 0
HE §naqp,:;'°tl »[1] :: TEXE @761201
lB,Ef()r\e q » [2] :: NodeList @786121
“:?B‘?Fﬁ;‘m\ »[3] :: TEXE @761203
i~ » [4] :: HTMLDivElement @786125 | _
+++| Snapshot 3 » (5] :: Nodelist @786123 Detached DOM tree
%l 11.4MB » [6] :: HTMLDiVElement @762117 e

Fixing JS Memory leaks in Drupal’s editor

https://www.drupal.org/node/2159965

~—

JS

Avoiding JS memory leaks in Imgur

http://imgur.com/blog/2013/04/30/tech-tuesday-avoiding-a-memory-
leak-situation-in-Js

] |

Node.js Performance Tip of the Week: Memory S
Leak D|agnOS|S 'ﬂ StrongLoop Newsletter

02 May 2014 / 0 Comments / in How-To, Performance Tip, StrongOps / by Shubhra Kar Archives

3 Tweet 3+ Share

Share

In last week’s performance tip, we discussed in detail how to leverage Google Most Viewed

StrongLoop: Memory profiling with
DevTools

http://strongloop.com/strongblog/node-js-performance-tip-of-the-
week-memory-leak-diagnosis/

BACN (3)

Case Studies (3)
Cloud (9)

Checklist

Ask yourself these questions:
e How much memory Is your page using?
e Isyour page leak free?

e How frequently are you GCing?

Know Your Arsenal.

Chrome DeVTOOIS Q Elements Network Sources Timeline | Profiles| Resources Audits Console Polymer Gulp >= # E|‘><

® O Summary v Class filter All objects v
. fil Constructor Distance Objects Count | Shallow Size Retained Size v
e window.performance.memory e >Plugin - 1™ 0% 40" 0% 40 0%
» TextMetrics - 1 0% 40 0% 40 0%
. . . HEAP SNAPSHOTS . . .
[Tlmellne Memory Vlew — >XMLHttpRequestProgressEvgnt - 1 0% 40 0% 40 0%
] napshot 1 LEV/N v Detached DOM tree / 4 entries 4 20 0% 0 0% 0 0%
vDetached DOM tree / 4 entries 4 0 0% 0 0%
o Heap PrOfIIer »[1] :: Text @189931 5 40 0% 40 0%
1 1 » [2] :: HTMLDivElement @1898 5 40 0% 40 0%
o (Object Allocation Tracker) AEDIVETGRNS €1698 3 A0 0% o ox]
»Detached DOM tree / 4 entries £ 0 0% 0 0%
»Detached DOM tree / 4 entries 4 0 0% 0 0%
»Detached DOM tree / 4 entries 4 0 0% 0 0%
» Detached DOM tree / 4 entries £ 0 0% 0 0%
»Detached DOM tree / 4 entries < 0 0% 0 0%
»Detached DOM tree / 4 entries 4 0 0% 0 0%
»Detached DOM tree / 4 entries 4 0 0% 0 0%
Retainers
Object Distance A | Shallow Size Retained Size
v [0] in Array @84817 2 32 0% 392 0%
» leakedNodes in Window / localhost:3000/ @3951 1 80 0% 35576 0%
»value in system / PropertyCell @177151 3 32 0% 32 0%
»0 in (object elements)[] @190039 3 360 0% 360 0%
» [3] in Detached DOM tree / 4 entries @81546312 4 0 0% 0 0%

. ,." A . .
[§ v 3,
< '

.

OH’MY.GOD, I{lOVED IT ALL]

Thank you!

+AddyOsmani
@addyosmani

#perfmatters

